
METRICS

METRICS EVERYWHERE
Saturday, April 9, 2011

METRICS

METRICS EVERYWHERE
Saturday, April 9, 2011

Make better decisions
by using numbers.

Saturday, April 9, 2011

Coda Hale
@coda

github.com/codahale

Saturday, April 9, 2011

http://github.com/codahale/
http://github.com/codahale/

www.yammer.com
The enterprise social network.

Saturday, April 9, 2011

http://www.yammer.com
http://www.yammer.com
http://www.yammer.com

I write code.

Saturday, April 9, 2011

But that’s not
actually my job.

Saturday, April 9, 2011

code

Saturday, April 9, 2011

code
business

value

Saturday, April 9, 2011

What the hell is
business value?

Saturday, April 9, 2011

A new feature.

Saturday, April 9, 2011

An improved
existing feature.

Saturday, April 9, 2011

Fewer bugs.

Saturday, April 9, 2011

Not pissing our users
off with a slow site.

Saturday, April 9, 2011

Not pissing our users
off with a slow site.

ugly

Saturday, April 9, 2011

Not pissing our users
off with a slow site.

ugly
pretty

Saturday, April 9, 2011

Making future
changes easier.

Saturday, April 9, 2011

Adding a unit test
before fixing that bug.

Saturday, April 9, 2011

Business value is
anything which makes
people more likely to

give us money.

Saturday, April 9, 2011

We want to generate
more business value.

Saturday, April 9, 2011

We need to make
better decisions
about our code.

Saturday, April 9, 2011

Our code generates
business value
when it runs.

Saturday, April 9, 2011

Our code generates
business value
when it runs,

not when we write it.

Saturday, April 9, 2011

We need to know
what our code does

when it runs.

Saturday, April 9, 2011

We can’t do this unless
we measure it.

Saturday, April 9, 2011

Why measure it?

Saturday, April 9, 2011

territorymap ≠

Saturday, April 9, 2011

city
of
San
Francisco

map
of

San
Francisco

≠

Saturday, April 9, 2011

the
way
it
is

the
way
we
talk

≠

Saturday, April 9, 2011

the
thing
in
itself

the
thing

we
think of

≠

Saturday, April 9, 2011

realityperception ≠

Saturday, April 9, 2011

MIND THE GAP

Saturday, April 9, 2011

We have a
mental model

of what our code does.

Saturday, April 9, 2011

It’s a mental model.
It’s not the code.

Saturday, April 9, 2011

It is often wrong.

Saturday, April 9, 2011

Confusion.

Saturday, April 9, 2011

“This code can’t
possibly work.”

Saturday, April 9, 2011

(It works.)

Saturday, April 9, 2011

MIND THE GAP

Saturday, April 9, 2011

“This code can’t
possibly fail.”

Saturday, April 9, 2011

(It fails.)

Saturday, April 9, 2011

MIND THE GAP

Saturday, April 9, 2011

Which is faster?

Saturday, April 9, 2011

Which is faster?
items.sort_by { |i| i.name }

Saturday, April 9, 2011

Which is faster?
items.sort_by { |i| i.name }

items.sort { |a, b| a.name <=> b.name }

Saturday, April 9, 2011

We don’t know.

Saturday, April 9, 2011

We don’t know.

def sort_by(&blk)
 sleep(100) # FIXME: I AM POISON
 super(&blk)
end

Saturday, April 9, 2011

We don’t know.

def sort_by(&blk)
 sleep(100) # FIXME: I AM POISON
 super(&blk)
end

def sort(&blk)
 # TODO: make not explode
 raise Exception.new("Haw haw!")
end

Saturday, April 9, 2011

We can’t know until
we measure it.

Saturday, April 9, 2011

This affects how we
make decisions.

Saturday, April 9, 2011

“Our application is slow.
This page takes 500ms.

Fix it.”

Saturday, April 9, 2011

Find the bottleneck!

Saturday, April 9, 2011

Find the bottleneck!

SQL Query

Saturday, April 9, 2011

Find the bottleneck!

SQL Query

Template Rendering

Saturday, April 9, 2011

Find the bottleneck!

SQL Query

Template Rendering

Session Storage

Saturday, April 9, 2011

We don’t know.

Saturday, April 9, 2011

Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

Saturday, April 9, 2011

Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms

Saturday, April 9, 2011

Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms

1ms

Saturday, April 9, 2011

Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms

1ms

315ms

Saturday, April 9, 2011

Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms

1ms

315ms

Saturday, April 9, 2011

Confusion.

Saturday, April 9, 2011

Saturday, April 9, 2011

We made a better
decision.

Saturday, April 9, 2011

We improve our mental
model by measuring
what our code does.

Saturday, April 9, 2011

territorymap ≠

Saturday, April 9, 2011

territorymap→

Saturday, April 9, 2011

We use our
mental model

to decide what to do.

Saturday, April 9, 2011

A better
mental model

makes us better at
deciding what to do.

Saturday, April 9, 2011

A better
mental model

makes us better at
generating

business value.

Saturday, April 9, 2011

Measuring makes your
decisions better.

Saturday, April 9, 2011

But only if we’re
measuring

the right thing.

Saturday, April 9, 2011

We need to measure
our code where it

matters.

Saturday, April 9, 2011

In the wild.

Saturday, April 9, 2011

Generating
business value.

Saturday, April 9, 2011

Saturday, April 9, 2011

PRODUCTION

Saturday, April 9, 2011

Continuously measuring
code in production.

Saturday, April 9, 2011

Metrics

Saturday, April 9, 2011

Metrics
Java/Scala

Saturday, April 9, 2011

github.com/codahale/metrics

Metrics
Java/Scala

Saturday, April 9, 2011

https://github.com/codahale/metrics
https://github.com/codahale/metrics

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Each metric is
associated with a class

and has a name.

Saturday, April 9, 2011

An autocomplete service
for city names.

Saturday, April 9, 2011

An autocomplete service
for city names.

> GET /complete?q=San%20Fra

Saturday, April 9, 2011

An autocomplete service
for city names.

> GET /complete?q=San%20Fra

< HTTP/1.1 200 RAD
<
< ["San Francisco"]

Saturday, April 9, 2011

What does this code
do that affects its
business value?

Saturday, April 9, 2011

And how can we
measure that?

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Gauge
The instantaneous value of something.

Saturday, April 9, 2011

of cities

Saturday, April 9, 2011

metrics.gauge("cities") { cities.size }

Saturday, April 9, 2011

metrics.gauge("cities") { cities.size }

Saturday, April 9, 2011

metrics.gauge("cities") { cities.size }

Saturday, April 9, 2011

“The service has 589
cities registered.”

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Gauges
Counters

Meters
Histograms

Timers

Saturday, April 9, 2011

Counter
An incrementing and
decrementing value.

Saturday, April 9, 2011

of open connections

Saturday, April 9, 2011

val counter = metrics.counter("connections")

counter.inc()

counter.dec()

Saturday, April 9, 2011

val counter = metrics.counter("connections")

counter.inc()

counter.dec()

Saturday, April 9, 2011

val counter = metrics.counter("connections")

counter.inc()

counter.dec()

Saturday, April 9, 2011

val counter = metrics.counter("connections")

counter.inc()

counter.dec()

Saturday, April 9, 2011

“There are 594 active
sessions on that server.”

Saturday, April 9, 2011

Gauges
Counters

Meters
Histograms

Timers

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Meter
The average rate of events

over a period of time.

Saturday, April 9, 2011

of requests/sec

Saturday, April 9, 2011

val meter = metrics.meter("requests",
 SECONDS)

meter.mark()

Saturday, April 9, 2011

val meter = metrics.meter("requests",
 SECONDS)

meter.mark()

Saturday, April 9, 2011

val meter = metrics.meter("requests",
 SECONDS)

meter.mark()

Saturday, April 9, 2011

val meter = metrics.meter("requests",
 SECONDS)

meter.mark()

Saturday, April 9, 2011

mean rate =
of events

elapsed time

Saturday, April 9, 2011

time

of
requests

Saturday, April 9, 2011

of
requests

time

Saturday, April 9, 2011

of
requests

time

Saturday, April 9, 2011

MIND THE GAP

Saturday, April 9, 2011

Recency.

Saturday, April 9, 2011

mean rate =
of events

elapsed time

Saturday, April 9, 2011

mean rate =
of events

elapsed time

Saturday, April 9, 2011

COGNITIVE HAZARD

Saturday, April 9, 2011

Exponentially weighted
moving average.

Saturday, April 9, 2011

-(1-α)kmt-1 + (1-(1-α)k)Yt

k

Saturday, April 9, 2011

-(1-α)kmt-1 + (1-(1-α)k)Yt

k

Saturday, April 9, 2011

of
requests

time

Saturday, April 9, 2011

of
requests

time

Saturday, April 9, 2011

of
requests

time

Saturday, April 9, 2011

of
requests

time

Saturday, April 9, 2011

1-minute rate

Saturday, April 9, 2011

1-minute rate
5-minute rate

Saturday, April 9, 2011

1-minute rate
5-minute rate
15-minute rate

Saturday, April 9, 2011

“We went from 3,000
requests/sec to
<500 a second.”

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Histogram
The statistical distribution of
values in a stream of data.

Saturday, April 9, 2011

of cities returned

Saturday, April 9, 2011

val histogram =
 metrics.histogram("response-sizes")

histogram.update(response.cities.size)

Saturday, April 9, 2011

val histogram =
 metrics.histogram("response-sizes")

histogram.update(response.cities.size)

Saturday, April 9, 2011

val histogram =
 metrics.histogram("response-sizes")

histogram.update(response.cities.size)

Saturday, April 9, 2011

minimum

Saturday, April 9, 2011

minimum
maximum

Saturday, April 9, 2011

minimum
maximum

mean

Saturday, April 9, 2011

minimum
maximum

mean
standard deviation

Saturday, April 9, 2011

Quantiles

Saturday, April 9, 2011

Quantiles
median

Saturday, April 9, 2011

Quantiles
median

75th percentile

Saturday, April 9, 2011

Quantiles
median

75th percentile
95th percentile

Saturday, April 9, 2011

Quantiles
median

75th percentile
95th percentile
98th percentile

Saturday, April 9, 2011

Quantiles
median

75th percentile
95th percentile
98th percentile
99th percentile

Saturday, April 9, 2011

Quantiles
median

75th percentile
95th percentile
98th percentile
99th percentile

99.9th percentile
Saturday, April 9, 2011

We can’t keep all of
these values.

Saturday, April 9, 2011

1,000 req/sec

Saturday, April 9, 2011

1,000 req/sec

×

Saturday, April 9, 2011

1,000 req/sec

×
1,000 actions/req

Saturday, April 9, 2011

1,000 req/sec

×
1,000 actions/req

×

Saturday, April 9, 2011

1,000 req/sec

×
1,000 actions/req

×
1 day

Saturday, April 9, 2011

1,000 req/sec

×
1,000 actions/req

×
1 day

=

Saturday, April 9, 2011

1,000 req/sec

×
1,000 actions/req

×
1 day

=
>86 billion values

Saturday, April 9, 2011

1,000 req/sec

×
1,000 actions/req

×
1 day

=
>86 billion values

>640GB of data/day

Saturday, April 9, 2011

1,000 req/sec

×
1,000 actions/req

×
1 day

=
>86 billion values

>640GB of data/day
Not gonna happen.

Saturday, April 9, 2011

COGNITIVE HAZARD

Saturday, April 9, 2011

Reservoir sampling.
Keep a statistically representative sample

of measurements as they happen.

Saturday, April 9, 2011

Vitter’s Algorithm R.

Vitter, J. (1985).
Random sampling with a reservoir.

ACM Transactions on Mathematical Software (TOMS), 11(1), 57.
Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

MIND THE GAP

Saturday, April 9, 2011

Vitter’s Algorithm R
produces uniform

samples.

Saturday, April 9, 2011

Recency.

Saturday, April 9, 2011

SUPER-DUPER
COGNITIVE HAZARD

Saturday, April 9, 2011

Saturday, April 9, 2011

Forward-decaying
priority sampling.

Cormode, G., Shkapenyuk, V., Srivastava, D., & Xu, B. (2009).
Forward Decay: A Practical Time Decay Model for Streaming Systems.

ICDE '09: Proceedings of the 2009 IEEE International Conference on Data Engineering.
Saturday, April 9, 2011

Maintain a statistically
representative sample
of the last 5 minutes.

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

time

of
cities

Saturday, April 9, 2011

Uniform Biased

Saturday, April 9, 2011

“95% of autocomplete
results return 3 cities or

less.”

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Timer
A histogram of durations and

a meter of calls.

Saturday, April 9, 2011

of ms to respond

Saturday, April 9, 2011

val timer = metrics.timer("requests",
 MILLISECONDS,
 SECONDS)

timer.time { handle(req, resp) }

Saturday, April 9, 2011

val timer = metrics.timer("requests",
 MILLISECONDS,
 SECONDS)

timer.time { handle(req, resp) }

Saturday, April 9, 2011

val timer = metrics.timer("requests",
 MILLISECONDS,
 SECONDS)

timer.time { handle(req, resp) }

Saturday, April 9, 2011

val timer = metrics.timer("requests",
 MILLISECONDS,
 SECONDS)

timer.time { handle(req, resp) }

Saturday, April 9, 2011

val timer = metrics.timer("requests",
 MILLISECONDS,
 SECONDS)

timer.time { handle(req, resp) }

Saturday, April 9, 2011

“At ~2,000 req/sec, our
99% latency jumps

from 13ms to 453ms.”

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Now what?

Saturday, April 9, 2011

Instrument it.

Saturday, April 9, 2011

Instrument it.
If it could affect your code’s

business value, add a metric.

Saturday, April 9, 2011

Instrument it.
If it could affect your code’s

business value, add a metric.
Our services have 40-50 metrics.

Saturday, April 9, 2011

Collect it.

Saturday, April 9, 2011

Collect it.
JSON via HTTP.

Saturday, April 9, 2011

Collect it.
JSON via HTTP.
Every minute.

Saturday, April 9, 2011

Monitor it.

Saturday, April 9, 2011

Monitor it.
Nagios/Zabbix/Whatever

Saturday, April 9, 2011

Monitor it.
Nagios/Zabbix/Whatever

If it affects business value,
someone should get woken up.

Saturday, April 9, 2011

Aggregate it.

Saturday, April 9, 2011

Aggregate it.
Ganglia/Graphite/Cacti/Whatever

Saturday, April 9, 2011

Aggregate it.
Ganglia/Graphite/Cacti/Whatever

Place current values in historical context.

Saturday, April 9, 2011

Aggregate it.
Ganglia/Graphite/Cacti/Whatever

Place current values in historical context.
See long-term patterns.

Saturday, April 9, 2011

Go faster.

Saturday, April 9, 2011

Shorten our
decision-making cycle.

Saturday, April 9, 2011

Observe

Saturday, April 9, 2011

Observe
Orient

Saturday, April 9, 2011

Observe
Orient
Decide

Saturday, April 9, 2011

Observe
Orient
Decide
Act

Saturday, April 9, 2011

Observe
Orient
Decide
Act

Saturday, April 9, 2011

Observe

What is the 99% latency of our
autocomplete service right now?

Saturday, April 9, 2011

Observe

What is the 99% latency of our
autocomplete service right now?

~500ms

Saturday, April 9, 2011

Orient

How does this compare to
other parts of our system,

both currently and historically?

Saturday, April 9, 2011

Orient

How does this compare to
other parts of our system,

both currently and historically?

way slower

Saturday, April 9, 2011

Decide

Should we make it faster?
Or should we add feature X?

Saturday, April 9, 2011

Decide

Should we make it faster?
Or should we add feature X?

make it faster

Saturday, April 9, 2011

Act!

Write some code.

Saturday, April 9, 2011

Act!

Write some code.

def sort_by(&blk)
 #sleep(100) # WTF DUDE
 super(&blk)
end

Saturday, April 9, 2011

10 Print "Rinse"
20 Print "Repeat"
30 Goto 10

Saturday, April 9, 2011

If we do this faster
we will win.

Saturday, April 9, 2011

Fewer bugs.

Saturday, April 9, 2011

More features.

Saturday, April 9, 2011

Happier
users.

Saturday, April 9, 2011

Money.
Saturday, April 9, 2011

tl;dr

Saturday, April 9, 2011

We might write code.

Saturday, April 9, 2011

We have to generate
business value.

Saturday, April 9, 2011

In order to know how well
our code is generating

business value, we need
metrics.

Saturday, April 9, 2011

Gauges
Counters
Meters

Histograms
Timers

Saturday, April 9, 2011

Monitor them for
current problems.

Saturday, April 9, 2011

Aggregate them for
historical perspective.

Saturday, April 9, 2011

territorymap ≠

Saturday, April 9, 2011

territorymap→

Saturday, April 9, 2011

Improve our mental
model of our code.

Saturday, April 9, 2011

MIND THE GAP

Saturday, April 9, 2011

Observe
Orient
Decide
Act

Saturday, April 9, 2011

If you’re on the JVM,
use Metrics.

Saturday, April 9, 2011

If you’re on the JVM,
use Metrics.

github.com/codahale/metrics

Saturday, April 9, 2011

https://github.com/codahale/metrics
https://github.com/codahale/metrics

If not,
you can build this.

Saturday, April 9, 2011

Please build this.

Saturday, April 9, 2011

Make better decisions
by using numbers.

Saturday, April 9, 2011

Thank you.

Saturday, April 9, 2011

Saturday, April 9, 2011

