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Make better decisions 
by using numbers.
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Coda Hale
@coda

github.com/codahale
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www.yammer.com
The enterprise social network.
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I write code.
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But that’s not
actually my job.
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code
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code
business

value
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What the hell is 
business value?
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A new feature.
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An improved
existing feature.
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Fewer bugs.
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Not pissing our users 
off with a slow site.
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Not pissing our users 
off with a slow site.

ugly
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Not pissing our users 
off with a slow site.

ugly
pretty
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Making future
changes easier.
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Adding a unit test 
before fixing that bug.
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Business value is 
anything which makes 
people more likely to 

give us money.
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We want to generate 
more business value.
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We need to make
better decisions
about our code.
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Our code generates 
business value
when it runs.
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Our code generates 
business value
when it runs,

not when we write it.
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We need to know
what our code does

when it runs.
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We can’t do this unless 
we measure it.
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Why measure it?
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territorymap ≠
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city
of
San
Francisco

map
of

San
Francisco

≠
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the
way
it
is

the
way
we
talk

≠
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the
thing
in
itself

the
thing

we
think of

≠
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realityperception ≠
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MIND THE GAP
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We have a
mental model

of what our code does.
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It’s a mental model.
It’s not the code.
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It is often wrong.
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Confusion.
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“This code can’t 
possibly work.”
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(It works.)
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MIND THE GAP
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“This code can’t 
possibly fail.”
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(It fails.)
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MIND THE GAP
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Which is faster?
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Which is faster?
items.sort_by { |i| i.name }
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Which is faster?
items.sort_by { |i| i.name }

items.sort { |a, b| a.name <=> b.name }
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We don’t know.
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We don’t know.

def sort_by(&blk)
  sleep(100) # FIXME: I AM POISON
  super(&blk)
end
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We don’t know.

def sort_by(&blk)
  sleep(100) # FIXME: I AM POISON
  super(&blk)
end

def sort(&blk)
  # TODO: make not explode
  raise Exception.new("Haw haw!")
end
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We can’t know until
we measure it.
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This affects how we 
make decisions.

Saturday, April 9, 2011



“Our application is slow. 
This page takes 500ms. 

Fix it.”
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Find the bottleneck!
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Find the bottleneck!

SQL Query
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Find the bottleneck!

SQL Query

Template Rendering
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Find the bottleneck!

SQL Query

Template Rendering

Session Storage
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We don’t know.
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Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage
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Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms
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Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms

1ms

Saturday, April 9, 2011



Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms

1ms

315ms
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Find The Bottleneck 2.0!

SQL Query

Template Rendering

Session Storage

53ms

1ms

315ms
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Confusion.
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We made a better 
decision.
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We improve our mental 
model by measuring
what our code does.
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territorymap ≠
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territorymap→
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We use our
mental model

to decide what to do.
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A better
mental model

makes us better at 
deciding what to do.
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A better
mental model

makes us better at 
generating

business value.
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Measuring makes your 
decisions better.
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But only if we’re 
measuring

the right thing.
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We need to measure 
our code where it 

matters.

Saturday, April 9, 2011



In the wild.
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Generating
business value.
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PRODUCTION
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Continuously measuring 
code in production.
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Metrics
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Metrics
Java/Scala
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github.com/codahale/metrics

Metrics
Java/Scala
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Gauges
Counters
Meters

Histograms
Timers
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Each metric is 
associated with a class 

and has a name.
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An autocomplete service 
for city names.
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An autocomplete service 
for city names.

> GET /complete?q=San%20Fra
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An autocomplete service 
for city names.

> GET /complete?q=San%20Fra

< HTTP/1.1 200 RAD
<
< ["San Francisco"]

Saturday, April 9, 2011



What does this code 
do that affects its 
business value?
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And how can we 
measure that?
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Gauges
Counters
Meters

Histograms
Timers
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Gauges
Counters
Meters

Histograms
Timers
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Gauge
The instantaneous value of something.
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# of cities
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metrics.gauge("cities") { cities.size }
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metrics.gauge("cities") { cities.size }
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metrics.gauge("cities") { cities.size }
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“The service has 589 
cities registered.”
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Gauges
Counters
Meters

Histograms
Timers
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Gauges
Counters

Meters
Histograms

Timers
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Counter
An incrementing and 
decrementing value.
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# of open connections
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val counter = metrics.counter("connections")

counter.inc()

counter.dec()
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val counter = metrics.counter("connections")

counter.inc()

counter.dec()

Saturday, April 9, 2011



val counter = metrics.counter("connections")

counter.inc()

counter.dec()
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val counter = metrics.counter("connections")

counter.inc()

counter.dec()
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“There are 594 active 
sessions on that server.”
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Gauges
Counters

Meters
Histograms

Timers
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Gauges
Counters
Meters

Histograms
Timers
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Meter
The average rate of events 

over a period of time.
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# of requests/sec
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val meter = metrics.meter("requests", 
                          SECONDS)

meter.mark()
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val meter = metrics.meter("requests", 
                          SECONDS)

meter.mark()
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val meter = metrics.meter("requests", 
                          SECONDS)

meter.mark()
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val meter = metrics.meter("requests", 
                          SECONDS)

meter.mark()
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mean rate = 
# of events

elapsed time
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time

# of
requests
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# of
requests

time
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# of
requests

time
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MIND THE GAP
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Recency.
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mean rate = 
# of events

elapsed time
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mean rate = 
# of events

elapsed time
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COGNITIVE HAZARD
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Exponentially weighted 
moving average.
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-(1-α)kmt-1 + (1-(1-α)k)Yt

k
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-(1-α)kmt-1 + (1-(1-α)k)Yt

k
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# of
requests

time
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# of
requests

time
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# of
requests

time
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# of
requests

time
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1-minute rate
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1-minute rate
5-minute rate
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1-minute rate
5-minute rate
15-minute rate
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“We went from 3,000 
requests/sec to
<500 a second.”
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Gauges
Counters
Meters

Histograms
Timers
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Gauges
Counters
Meters

Histograms
Timers
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Histogram
The statistical distribution of 
values in a stream of data.

Saturday, April 9, 2011



# of cities returned
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val histogram =
  metrics.histogram("response-sizes")

histogram.update(response.cities.size)
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val histogram =
  metrics.histogram("response-sizes")

histogram.update(response.cities.size)
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val histogram =
  metrics.histogram("response-sizes")

histogram.update(response.cities.size)
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minimum
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minimum
maximum
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minimum
maximum

mean
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minimum
maximum

mean
standard deviation
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Quantiles
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Quantiles
median
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Quantiles
median

75th percentile
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Quantiles
median

75th percentile
95th percentile
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Quantiles
median

75th percentile
95th percentile
98th percentile
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Quantiles
median

75th percentile
95th percentile
98th percentile
99th percentile
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Quantiles
median

75th percentile
95th percentile
98th percentile
99th percentile

99.9th percentile
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We can’t keep all of 
these values.
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1,000 req/sec
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1,000 req/sec

×
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1,000 req/sec

×
1,000 actions/req
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1,000 req/sec

×
1,000 actions/req

×
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1,000 req/sec

×
1,000 actions/req

×
1 day
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1,000 req/sec

×
1,000 actions/req

×
1 day

=
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1,000 req/sec

×
1,000 actions/req

×
1 day

=
>86 billion values
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1,000 req/sec

×
1,000 actions/req

×
1 day

=
>86 billion values

>640GB of data/day
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1,000 req/sec

×
1,000 actions/req

×
1 day

=
>86 billion values

>640GB of data/day
Not gonna happen.
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COGNITIVE HAZARD
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Reservoir sampling.
Keep a statistically representative sample 

of measurements as they happen.
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Vitter’s Algorithm R.

Vitter, J. (1985).
Random sampling with a reservoir.

ACM Transactions on Mathematical Software (TOMS), 11(1), 57.
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time

# of
cities
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time

# of
cities
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time

# of
cities
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time

# of 
cities
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time

# of 
cities
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MIND THE GAP
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Vitter’s Algorithm R 
produces uniform 

samples.
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Recency.
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SUPER-DUPER
COGNITIVE HAZARD
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Forward-decaying 
priority sampling.

Cormode, G., Shkapenyuk, V., Srivastava, D., & Xu, B. (2009).
Forward Decay: A Practical Time Decay Model for Streaming Systems.

ICDE '09: Proceedings of the 2009 IEEE International Conference on Data Engineering.
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Maintain a statistically 
representative sample 
of the last 5 minutes.
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time

# of 
cities
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time

# of 
cities
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time

# of 
cities
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time

# of 
cities
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Uniform Biased
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“95% of autocomplete 
results return 3 cities or 

less.”
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Gauges
Counters
Meters

Histograms
Timers
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Gauges
Counters
Meters

Histograms
Timers
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Timer
A histogram of durations and 

a meter of calls.
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# of ms to respond
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val timer = metrics.timer("requests", 
                          MILLISECONDS,
                          SECONDS)

timer.time { handle(req, resp) }
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val timer = metrics.timer("requests", 
                          MILLISECONDS,
                          SECONDS)

timer.time { handle(req, resp) }
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val timer = metrics.timer("requests", 
                          MILLISECONDS,
                          SECONDS)

timer.time { handle(req, resp) }
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val timer = metrics.timer("requests", 
                          MILLISECONDS,
                          SECONDS)

timer.time { handle(req, resp) }
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val timer = metrics.timer("requests", 
                          MILLISECONDS,
                          SECONDS)

timer.time { handle(req, resp) }

Saturday, April 9, 2011



“At ~2,000 req/sec, our 
99% latency jumps 

from 13ms to 453ms.”
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Gauges
Counters
Meters

Histograms
Timers
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Gauges
Counters
Meters

Histograms
Timers
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Now what?
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Instrument it.
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Instrument it.
If it could affect your code’s 

business value, add a metric.
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Instrument it.
If it could affect your code’s 

business value, add a metric.
Our services have 40-50 metrics.
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Collect it.
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Collect it.
JSON via HTTP.
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Collect it.
JSON via HTTP.
Every minute.
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Monitor it.
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Monitor it.
Nagios/Zabbix/Whatever
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Monitor it.
Nagios/Zabbix/Whatever

If it affects business value, 
someone should get woken up.
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Aggregate it.
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Aggregate it.
Ganglia/Graphite/Cacti/Whatever
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Aggregate it.
Ganglia/Graphite/Cacti/Whatever

Place current values in historical context.
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Aggregate it.
Ganglia/Graphite/Cacti/Whatever

Place current values in historical context.
See long-term patterns.
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Go faster.
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Shorten our
decision-making cycle.
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Observe
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Observe
Orient
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Observe
Orient
Decide
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Observe
Orient
Decide
Act
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Observe
Orient
Decide
Act
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Observe

What is the 99% latency of our 
autocomplete service right now?
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Observe

What is the 99% latency of our 
autocomplete service right now?

~500ms
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Orient

How does this compare to
other parts of our system,

both currently and historically?
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Orient

How does this compare to
other parts of our system,

both currently and historically?

way slower
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Decide

Should we make it faster?
Or should we add feature X?
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Decide

Should we make it faster?
Or should we add feature X?

make it faster
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Act!

Write some code.

Saturday, April 9, 2011



Act!

Write some code.

def sort_by(&blk)
  #sleep(100) # WTF DUDE
  super(&blk)
end
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10 Print "Rinse"
20 Print "Repeat"
30 Goto 10
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If we do this faster
we will win.
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Fewer bugs.
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More features.
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Happier 
users.
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Money.
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tl;dr
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We might write code.
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We have to generate
business value.
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In order to know how well 
our code is generating 

business value, we need 
metrics.
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Gauges
Counters
Meters

Histograms
Timers
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Monitor them for 
current problems.
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Aggregate them for 
historical perspective.
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territorymap ≠

Saturday, April 9, 2011



territorymap→
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Improve our mental 
model of our code.
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MIND THE GAP
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Observe
Orient
Decide
Act
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If you’re on the JVM, 
use Metrics.
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If you’re on the JVM, 
use Metrics.

github.com/codahale/metrics
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https://github.com/codahale/metrics
https://github.com/codahale/metrics


If not,
you can build this.
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Please build this.
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Make better decisions 
by using numbers.
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Thank you.
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